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The applicability of the Dirichlet-to-Neumann technique coupled with finite difference
methods is enhanced by extending it to multiple scattering from obstacles of arbitrary
shape. The original boundary value problem (BVP) for the multiple scattering problem is
reformulated as an interface BVP. A heterogenous medium with variable physical proper-
ties in the vicinity of the obstacles is considered. A rigorous proof of the equivalence
between these two problems for smooth interfaces in two and three dimensions for any
finite number of obstacles is given. The problem is written in terms of generalized curvilin-
ear coordinates inside the computational region. Then, novel elliptic grids conforming to
complex geometrical configurations of several two-dimensional obstacles are constructed
and approximations of the scattered field supported by them are obtained. The numerical
method developed is validated by comparing the approximate and exact far-field patterns
for the scattering from two circular obstacles. In this case, for a second order finite differ-
ence scheme, a second order convergence of the numerical solution to the exact solution is
easily verified.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Analytical solutions for wave scattering problems from multiple complexly shaped obstacles are not possible to obtain in
general. For this reason, early work was mainly performed on circular cylindrical and spherical obstacles using modal expan-
sions of the scattered field. The construction of analytical techniques for multiple scattering continues to be an active field of
research. Numerous works on multiple scattering from circular, elliptical cylinders, and spheres have recently appeared [1–
3]. A major drawback of these methods is that they cannot be applied to more general scatterer geometries. The excellent
book by Martin [4] reviews a variety of these analytical techniques and contains a large number of references.

Multiple scattering from scatterers of complex geometries requires the application of numerical techniques. Recent
numerical work has been based on either finite difference, integral equation, or finite element methods. For instance, Sherer
and Visbal [5] and Sherer and Scott [6] discussed multiple acoustic scattering from two and three circular cylinder config-
urations in two dimensions. For the approximations, they employed high-order compact finite difference methods on com-
plex grids generated by overset-meshing procedures. Their numerical solution accurately approximates the analytical
solution. Although, their technique has potential applications to scatterers of arbitrary shape, they only presented results
for obstacles in the form of circular cylinders. Another attempt was made by Villamizar and Acosta [7] where an acoustic
scattering problem from three complexly shaped obstacles was numerically solved. The approximation obtained for the
acoustic pressure field is illustrated in Fig. 1 for a two-dimensional scatterer configuration. For this purpose, the authors used
. All rights reserved.
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Fig. 1. Multiple acoustic scattering from three complexly shaped obstacles.
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a finite difference time-dependent scheme for the wave equation in generalized curvilinear coordinates coupled with a cur-
vilinear version of Bayliss–Gunzburger–Turkel local absorbing boundary condition [8]. Absorbing boundary conditions for
scattering problems have been largely used. The potential advantages and drawbacks of these conditions have been exten-
sively studied by Givoli [9,10], Tsynkov [11], and Medvinsky et al. [12]. In [7] as well as in [5,6], a common practice consisting
of choosing an artificial boundary B large enough to enclose all the obstacles, where the absorbing boundary condition is
placed, was followed. This practice leads to the use of relatively large domains of integration that may require huge amount
of storage and computer time. Furthermore, generating appropriate grids for complex scatterer configurations may become a
complicated and time consuming task as described in [7,13].

A major step to simplify the computation on regions containing complex scatterer configurations was recently taken by
Grote and Kirsch [14]. Instead of employing an artificial boundary enclosing all the scatterers, they use several smaller sep-
arate artificial boundaries Bm, each one enclosing a different obstacle. To handle the unboundedness of the physical domain,
they introduced an extended version of an exact non-reflecting boundary condition known as Dirichlet-to-Neumann (DtN)
[15,16]. More specifically, they defined a DtN-type condition on the artificial boundary B ¼ [Bm which they called multiple-
DtN non-reflecting boundary condition. This condition is independent of the numerical discretization employed in the com-
putational domain and of the shapes of the individual scatterers. It only depends on the shapes of the artificial boundaries.
The advantage of doing this is that the computation can be performed in relatively small regions which drastically reduces
the storage, computational cost, and greatly simplifies the grid generation process. Grote and Kirsch obtained remarkable
numerical results for two-dimensional multiple scattering from circular and elliptical obstacles.

Our focus in this work is to take advantage of the potential that the multiple-DtN technique has to solve multiple scatter-
ing from scatterers of arbitrary shape by coupling it with a finite difference method (FDM) for the Helmholtz equation in
generalized curvilinear coordinates. Furthermore, by allowing the index of refraction to vary in the vicinity of the obstacles,
we are able to extend the applicability of the proposed method to complex scattering configurations dealing not only with
impenetrable obstacles but also with media inhomogeneities. This is particularly important in emerging applications such as
the design of special heterogeneous layers whose purpose is to shield or cloak an obstacle from electromagnetic waves to
make it invisible [17,18].

An important aspect of this work is the formulation of an interface boundary value problem (BVP) equivalent to the ori-
ginal multiple scattering problem. The interface B of the new problem is formed by separate artificial boundaries Bm enclos-
ing the different obstacles. For clarity and completeness, a rigorous proof of the equivalence between these two problems is
given for smooth interfaces Bm of arbitrary shape. This equivalence is proven for acoustically soft, hard, and impedance-type
impenetrable obstacles embedded in heterogeneous media. The proof is also valid in two and three dimensions for any finite
number of obstacles.

The second main aspect consists of the introduction of a novel numerical technique for the efficient computation of
approximate solutions to the scattering problem for geometrically complex scatterer configurations in two dimensions.
The multiple-DtN condition renders a new interior BVP defined inside a region that is internally bounded by each obstacle
physical boundary and externally by each artificial boundary Bm. In fact, the complex shapes of the annular regions that
forms the domain of the interior BVP leads to a reformulation of this problem in terms of generalized curvilinear coordinates.
Novel elliptic conforming grids for these complex annular regions are constructed and approximations of the scattered field
supported by them are obtained.
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The formulation of interface problems to replace the original exterior boundary value problem for Helmholtz and other
elliptic equations is not new. This procedure can be traced back to the work of Maccamy and Marin [19] which motivated the
DtN non-reflecting boundary condition [15]. Similarly, Ihlenburg [20] derived the DtN technique based on an analogous
interface BVP as the one discussed in the present work. Johnson and Nedelec [21] also considered an interface BVP to numer-
ically solve Poisson’s equation by coupling a finite element method (FEM) and a boundary element method (BEM) at the
interfacial boundary. Most other hybrid FEM/BEM methods are based on the same procedure. In particular, the work by
Hsiao [22] and the references therein follow this procedure. The technique has also been extended to problems in elasticity
[23] and electromagnetism [24].

In spite of all the above work, to the best of our knowledge, there is no complete proof of this equivalence for an exterior
Helmholtz problem as formulated in this article. However, there are two references where a rigorous proof of the equiva-
lence for closely related interface problems is provided. The first one deals with the basic formulation for the Domain
Decomposition Method for the Helmholtz equation as described in the pioneering work of Despres [25]. As opposed to
our work, he considered an interior Helmholtz problem. The second one is the work by Monk [26] for electromagnetic scat-
tering using the full system of Maxwell’s equations.

The proposed numerical method is validated by comparing the approximate and exact far-field patterns for a configura-
tion of two circular cylindrical obstacles. For instance, by employing a second order finite difference scheme, a second order
convergence of the numerical solution to the exact solution is easily verified. Also, the method is successfully applied to three
obstacles bounded by truly complex curves. This and other experiments illustrate the efficiency of the proposed technique in
terms of storage (number of grid points) and computational cost. Additionally, it is well-known that volume discretizations
such as FDM and FEM as opposed to boundary elements are naturally suited for treating localized heterogeneities, non-lin-
earities, and sources. To that end, the broad scope of the method is demonstrated by applying it to complexly shaped obsta-
cles embedded in a medium with variable index of refraction in their vicinities, which would be a difficult problem to deal
with using any other numerical method.

2. Mathematical model

Consider a monochromatic plane wave, uinc(x)e�ixt = ei kx�de�ixt, where d is a unit vector that points in the direction of inci-
dence, and i ¼

ffiffiffiffiffiffiffi
�1
p

. This incident wave is impinging upon a scattering configuration of M bounded obstacles of arbitrary
shape in two or three dimensions. The scatterers are assumed to be impenetrable to the acoustic waves and well separated
from each other. Let X be the connected infinite domain bounded internally by the union of the obstacle boundaries
C ¼

SM
m¼1C

m for m = 1,2, . . . ,M. These boundaries are closed smooth curves in R2 or surfaces in R3, respectively. Since the inci-
dent wave is time-harmonic, the total field can be modeled by the Helmholtz equation in the exterior region X.

It is assumed that the total field u satisfies the boundary condition Z @u
@m þ ð1� ZÞu ¼ 0 on C. The vector m represents the

unit normal to the physical boundary C and it points into the interior of X. The coefficient Z 2 C and Im(1 � Z)/Z P 0 when
Z – 0. Notice that in the particular cases when Z = 0 or Z = 1, this boundary condition models acoustically soft or hard obsta-
cles, respectively. Otherwise, it corresponds to an impedance boundary condition.

By decomposing the total field u into an incident field uinc and a scattered field usc such that u = uinc + usc in X, a boundary
value problem for usc is obtained. This consists of finding usc 2 C2ðXÞ \ CðXÞ, satisfying
Dusc þ k2n2ðxÞusc ¼ k2mðxÞuinc in X; ð1Þ

Z
@usc

@m
þ ð1� ZÞusc ¼ � Z

@uinc

@m
þ ð1� ZÞuinc

� �
on C; ð2Þ

lim
r!1

rðd�1Þ=2 @usc

@r
� ikusc

� �
¼ 0; ð3Þ
where k > 0 is the wavenumber, n 2 C1ðXÞ \ CðXÞ is a real-valued function called the index of refraction, and m :¼ 1 � n2 has
compact support K. The limit in (3), known as the Sommerfeld radiation condition, is assumed to hold uniformly for all direc-
tions, where r = jxj and the parameter d = 2 or 3 for two or three dimensions, respectively.

In this work, two important physical cases modeled by the above BVP will be considered. One of them is for a homoge-
neous (n � 1) exterior region X surrounding the obstacles, while the other one is for a heterogeneous exterior region where n
is allowed to vary only in the immediate vicinity of the obstacles, and n(x) = 1 in the rest of the domain. It is possible to show
existence and uniqueness for (1)–(3) using some of the theorems in [27]. In fact, the field, usc = u1 + u2, uniquely solves BVP
(1)–(3) provided that u1 is the radiating solution to the Helmholtz equation in X satisfying the boundary condition (2), and u2

is the radiating field satisfying
Du2 þ k2u2 ¼ k2mðxÞu2 þ k2mðxÞðu1 þ uincÞ in X; ð4Þ
as well as the homogeneous boundary condition corresponding to (2). The existence and uniqueness of such u1 is proven in
Chapter 3 of [27]. Regarding u2, consider the Lippmann–Schwinger integral equation
u2ðxÞ þ k2
Z

K
Gðx; yÞmðyÞu2ðyÞdy ¼ �k2

Z
K

Gðx; yÞmðyÞðu1ðyÞ þ uincðyÞÞdy; ð5Þ
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where G(x,y) is the radiating Green’s function satisfying Helmholtz equation (n � 1) in X when x – y, as well as the homo-
geneous boundary condition corresponding to (2). This Green’s function G can be constructed according to Chapter 9 in [28].
For the existence and uniqueness of u2, it is enough to show first, that the BVP for u2 is equivalent to the problem of solving
the integral Eq. (5) and secondly, that this integral equation has a unique solution. The proof of the equivalence follows clo-
sely the one for Theorem 8.3 in [27], with the fundamental solution replaced by the Green’s function. Similarly, existence and
uniqueness of solutions for (5), readily follows from Section 8.3 in [27].

An important aspect of this work is the formulation of an interface BVP equivalent to (1)–(3). A second aspect deals with
the introduction of a novel numerical technique for the efficient computation of the solution of this interface BVP for geo-
metrically complex configurations. The next section is dedicated to the formulation of the equivalent BVP.
3. An equivalent interface boundary value problem

In this section, an equivalence between the original boundary value problem (1)–(3) and an associated interface boundary
value problem is rigorously established. The formulation of the interface BVP will be performed in two dimensions where
x ¼ ðx; yÞ 2 R2, with corresponding polar coordinates (r,h) such that x = rcosh and y = rsinh. However, this formulation can
be easily extended to three dimensions.
3.1. Interface boundary value problem

First, a domain decomposition is stated in preparation for the formulation of the equivalent interface problem. The do-
main X is divided into the following sub-domains:

(i) Several bounded open disjoint sub-domains Xm (m = 1,2, . . . ,M), which are internally bounded by a closed curve Cm

and externally bounded by another closed curve, denoted by Bm, as shown in Fig. 2. From these sub-domains a
bounded physical domain Xin is defined as Xin ¼

SM
m¼1X

m. Also, by joining all the outer curves, an interface
B ¼

SM
m¼1B

m is obtained. For computational convenience, the curves Bm are chosen as circles. However, the theory that
will be developed in this Section 3.1 and the next Section 3.2 is valid for sufficiently smooth closed curves.

(ii) An open unbounded connected exterior region Xout ¼ X nXin.

To simplify the notation, open unbounded connected exterior regions Wm ¼ X nXm (m = 1,2, . . . ,M) are also introduced.
Notice that Xout ¼

TM
m¼1W

m, and that points enclosed by the curves Cl belong to Wm if l – m. Also, the interface between
Xm and Xout is the circle denoted by Bm of radius Rm centered at the point Om. It is assumed that the obstacles are well sep-
arated, such that the circles Bm do not intersect each other and Xout is connected.
Fig. 2. Domain decomposition with interface curves, and global system of coordinates (left). Coordinates of the normal vector at a point on Bm with respect
to l-polar coordinates (rl,hl) (right).
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Now, an interface boundary value problem is defined. This problem consists of finding uin 2 C2ðXinÞ \ CðXinÞ and
uout 2 C2ðXoutÞ \ CðXoutÞ satisfying
Duin þ k2n2ðxÞuin ¼ k2mðxÞuinc in Xin; ð6Þ
Duout þ k2uout ¼ 0 in Xout: ð7Þ
Physical boundary condition:
Z
@uin

@m
þ ð1� ZÞuin ¼ � Z

@uinc

@m
þ ð1� ZÞuinc

� �
on C: ð8Þ
Sommerfeld radiation condition:
lim
r!1

ffiffiffi
r
p @uout

@r
� ikuout

� �
¼ 0; uniformly for all h 2 ½0;2p�: ð9Þ
Interface conditions:
uin ¼ uout on B; ð10Þ
@uin

@m
¼ @uout

@m
on B; ð11Þ
with n, m, and Z as already defined in Section 2. The interface B is chosen so that the support of m is contained in Xin. The unit
normal vector m points into Xin in (8) and into Xout in (11). It will be shown below that this interface BVP is equivalent to the
original multiple scattering BVP (1)–(3) by proving that both problems have the same unique solution in their common do-
main X. Other similar approaches to transform the original BVP into an equivalent interface BVP that is easier to treat
numerically have been used by other researchers, as mentioned in Section 1.

For clarity and completeness, a rigorous proof of the equivalence between (1), (2), (7)–(10) and (11) is presented in the
rest of this section. The formulation and proof of Theorem 1, discussed below, is inspired in a similar one found in [14]. The
strategy of the proof consists of showing that the solution usc of (1)–(3) is also a solution of (6)–(11) followed by a proof of
uniqueness.

Theorem 1. The interface boundary value problem (6)–(11) has a unique solution given by uin in Xin and uout in Xout, such that uin

coincides with the restriction of the solution of (1)–(3) usc to Xin, and uout coincides with the restriction of usc to Xout.
Proof. Existence. As mentioned above there is a unique solution usc 2 C2ðXÞ \ CðXÞ to the scattering problem (1)–(3). Due to
the regularity of usc in X, the fact that Xin contains the support of m, and that Xin, Xout, and B are contained in X, it follows
that usc is also a solution to the interface BVP (6)–(11).

Uniqueness. Here, it is sufficient to show that any solution to the homogeneous interface BVP associated to (6)–(11)
vanishes identically. So, let two complex-valued functions win 2 C2ðXinÞ \ CðXinÞ and wout 2 C2ðXoutÞ \ CðXoutÞ satisfy the
homogeneous interface BVP. Applying Green’s first identity to win and win in the region Xin leads to
Z

B
win

@win

@m
dl�

Z
C

win
@win

@m
dl ¼

Z
Xin

jrwinj2dsþ
Z

Xin

winDwinds: ð12Þ
Using Helmholtz equation for win, substituting the interface continuity conditions into the integral over B, and solving for
this term yields
Z

B
wout

@wout

@m
dl ¼

Z
Xin

jrwinj2ds�
Z

Xin

k2n2jwinj2dsþ
Z
C

win
@win

@m
dl: ð13Þ
Considering only its imaginary part, Eq. (13) reduces to
Im
Z
B

wout
@wout

@m
dl

� �
¼ Im

Z
C

win
@win

@m
dl

� �
: ð14Þ
On the boundary C;win satisfies the homogenous condition Z @win
@m þ ð1� ZÞwin ¼ 0. Assuming Z – 0, solving for the derivative

term and substituting it into (14) results in
Im
Z
B

wout
@wout

@m
dl

� �
¼ Im

1� Z
Z

� � Z
C
jwinj2dl

� �
P 0: ð15Þ
Applying Theorem 2.12 in [27] (which is a direct consequence of Rellich’s lemma) to wout leads to the conclusion wout = 0 in
Xout . For the special case when Z = 0 (Dirichlet condition), the hypothesis of Theorem 2.12 is trivially satisfied from (14). Also,
the continuity conditions at the interface B lead to win = wout = 0 and @win

@m ¼
@wout
@m ¼ 0 on B.

Now, it only remains to show that win = 0 in Xin. This is accomplished by the use of Green’s integral representation of win,
derived in Theorem 2.1 of [27]. In fact for x 2Xin,
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winðxÞ ¼
Z
C

winðyÞ
@Uðx; yÞ
@mðyÞ �Uðx; yÞ @win

@m
ðyÞ

� �
dlðyÞ �

Z
Xin

k2mðyÞwinðyÞUðx; yÞdsðyÞ: ð16Þ
Here, U is the fundamental solution to Helmholtz equation. By letting x vary throughout Xin [Xout ¼ X in the right-hand side
of (16), an extension ~w of win defined in the entire unbounded region X can be readily constructed. Due to the regularity of the
integrands of (16) in Xout, the extension ~wjXout

2 C2ðXoutÞ \ CðXoutÞ, and it is clearly a radiating solution to the Helmholtz equa-
tion in this region. Moreover, ~w ¼ win ¼ 0 on B. Therefore, another application of Theorem 2.12 in [27] leads to ~w ¼ 0 in Xout.

Furthermore, the first integral in (16) satisfies Helmholtz equation in X. Also since m 2 C1ðXÞ \ CðXÞ with its support
contained in Xin, and win 2 C2ðXinÞ \ CðXinÞ then, Theorem 8.1 in [27] applied to the volume potential in (16) guarantees,
first, that ~w is in C2(X), and secondly, that D ~wþ k2n2ðxÞ~w ¼ 0 in X. Since ~w already vanishes in Xout, all conditions of
Theorem 8.6 in [27] (unique continuation principle) are satisfied which lead to the vanishing of ~w in the entire domain X.
Hence, the sought condition, win ¼ ~wjXin

¼ 0 in Xin, is obtained completing the proof of uniqueness.
In the course of the proof of existence, it has been shown that usc, the solution to (1)–(3), is also the solution to (6)–(11).

To complete the proof of the equivalence between the two problems, the reciprocal statement should be proved. For this
purpose, consider a pair of functions uin and uout forming the solution ũsc to the interface BVP (6)–(11), i.e.,
~uscðxÞ :¼ uinðxÞ; if x 2 Xin;

uoutðxÞ; if x 2 Xout:

(
ð17Þ
If ~usc were not the solution to (1)–(3), then usc and ~usc would be two different solutions of the interface BVP (6)–(11) con-
tradicting the uniqueness just proven. h
Remark 1. The proof of Theorem 1 can easily be extended to three dimensions by making the appropriate changes in the
interface, the integrals involved and the radiation condition. It also applies to obstacles embedded in heterogeneous media
with variations of the index of refraction in their vicinity. Furthermore, by eliminating the physical boundary C and letting
Xin be the region enclosed by B, the proof of Theorem 1 also applies to multiple scattering by heterogeneous media in the
absence of impenetrable obstacles.

Due to the complexity of the above interface BVP in terms of the boundary shape, number, and position of the obstacles,
an explicit analytical solution cannot be found in general. Therefore, this problem should be treated by numerical methods,
in general. One of the main difficulties encountered by numerical methods based on finite difference or finite element is the
efficient handling of the unboundedness of the physical domain. The next section deals with this difficulty.

3.2. Derivation of the multiple-DtN boundary condition

The advantage of replacing the original scattering problem (1)–(3) by the interface BVP (6)–(11) is that its solution can be
worked out in two different forms and regions. First, numerical solutions are sought inside the complexly bounded annular
regions Xm and then an analytical solution is completely determined in the outer region Xout which is internally bounded by
the artificial boundaries Bm. As a result, the computational cost is greatly reduced since the computation can be performed in
relatively smaller regions.

Details on how to obtain both forms of the solution are as follows. First, obtain an analytical expression for uout in the
unbounded sub-domain Xout depending on unknown boundary values at B. Second, use the interface conditions (10) and
(11) and the analytical expression of uout, evaluated at the interface B, to derive a non-reflecting boundary condition called
the multiple-DtN condition [14] for uin on B. Then, use this boundary condition, (6) and (8) to define a new BVP in the
bounded domain Xin. Third, numerically solve for uin in Xin and for the boundary data of uout on B. Finally, replace the bound-
ary values of uout at B into the analytical expression for uout to completely determine uout in Xout. From the formula for uout,
the far-field pattern may be computed if desired.

To derive an analytical expression for uout in Xout , we follow the approach in [14]. This consists of defining a family of M
purely outgoing wave fields um 2 C2ðWmÞ \ CðWmÞ (m = 1, . . . ,M) satisfying
Dum þ k2um ¼ 0 in Wm; ð18Þ

lim
r!1

ffiffiffi
r
p @um

@r
� ikum

� �
¼ 0: ð19Þ
Each outgoing wave um is uniquely determined by its boundary data at Bm, as shown in Chapter 3 of [27]. The next theorem
states that uout can be represented as a superposition of purely outgoing wave fields um.

Theorem 2. Let uout 2 C2ðXoutÞ \ CðXoutÞ be part of the unique solution to the interface BVP (6)–(11) in Xout. Then, uout can be
uniquely decomposed into M purely outgoing wave fields um(m = 1,2, . . . ,M), i.e.,
uoutðxÞ ¼
XM

m¼1

umðxÞ; x 2 Xout; ð20Þ
satisfying (18) and (19).
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Proof. Existence. Following Grote and Kirsch [14], let us define each purely outgoing wave field by
umðxÞ :¼
Z
Bm

uoutðyÞ
@Uðx; yÞ
@mðyÞ �Uðx; yÞ @uout

@m
ðyÞ

� �
dlðyÞ for x 2 Wm: ð21Þ
The goal is to show that the outgoing wave fields defined by (21) satisfy Eqs. (18)–(20). To begin, each um 2 C2(Wm), since
U(x,y) as a function of x also belongs to C2(Wm). Furthermore, defining um on Bm as the continuous extension (see the jump
relations Theorem 3.1 of [27]) of the integral (21) leads to um 2 C2ðWmÞ \ CðWmÞ.

Now, considering Green’s integral representation of uout in Xout and using the additivity of the integral over the domain
B ¼

SM
m¼1Bm, we obtain
uoutðxÞ ¼
Z
B

uoutðyÞ
@Uðx; yÞ
@mðyÞ �Uðx; yÞ @uout

@m
ðyÞ

� �
dlðyÞ ¼

XM

m¼1

Z
Bm

uoutðyÞ
@Uðx; yÞ
@mðyÞ �Uðx; yÞ @uout

@m
ðyÞ

� �
dlðyÞ

¼
XM

m¼1

umðxÞ; x 2 Xout: ð22Þ
Thus, the decomposition of uout into M outgoing waves um in Xout has been proved. Next, we will show that this decompo-
sition is unique.

Uniqueness. Assume there is another decomposition of uout in terms of outgoing waves vm 2 C2ðWmÞ \ CðWmÞ
(m = 1, . . . ,M) satisfying (18) and (19). Then,
XM

l¼1

wl ¼
XM

l¼1

ðul � v lÞ ¼ uout � uout ¼ 0 in Xout: ð23Þ
To prove uniqueness, it is sufficient to show that for an arbitrary m 2 {1,2, . . . ,M}, wm: = um � vm � 0 in Wm. This can be
accomplished by constructing an open and connected region �m bounded internally by Bm and externally by some simple,
closed, smooth curve Hm that does not intersect any of the components of the interface boundary B. This is possible because
the obstacles are well separated from each other. Then, it follows that �m �Xout.

The key idea of the proof is that wl(l – m) satisfies Helmholtz equation at every point inside the region bounded by Hm

including points inside the obstacle enclosed by Cm. Whereas, wm satisfies Helmholtz equation at every point outside the
region enclosed by Hm, as well as the radiation condition at infinity. As a result, Green’s integral representation of wm on the
unbounded region internally bounded by Hm yields
Z

Hm
wmðyÞ @Uðx; yÞ

@mðyÞ �Uðx; yÞ @wm

@m
ðyÞ

� �
dlðyÞ ¼ 0 for x 2 �m: ð24Þ
Also, the integral representation of wl on the bounded region with outer boundary Hm leads to
Z
Hm

wlðyÞ @Uðx; yÞ
@mðyÞ �Uðx; yÞ @wl

@m
ðyÞ

� �
dlðyÞ ¼ �wlðxÞ for x 2 �m and l – m: ð25Þ
Then, adding (25) for all l – m and (24) results
Z
Hm

XM

l¼1

wlðyÞ @Uðx; yÞ
@mðyÞ �Uðx; yÞ @

PM
l¼1wl

@m
ðyÞ

" #
dlðyÞ ¼ �

X
l–m

wlðxÞ; x 2 �m: ð26Þ
Notice thatHm � Xout , then the result in (23) can be used at the left of (26) leading to
P

l–mwlðxÞ ¼ 0 for all x 2 �m. Finally, by
comparing this sum with (23), it follows that wm(x) = 0 for all x 2 �m. Since wm vanishes in the open region �m, then it van-
ishes in the entirety of its domain of definition Wm, due to its analyticity (see Theorem 2.2 in [27]). From the arbitrariness of
m, it follows that wm � 0 for all m 2 {1,2, . . . ,M} which establishes the uniqueness of the decomposition. h
Remark 2. The proof of Theorem 2 does not require the interfaces Bm to be circles. The knowledge of the eigenfunctions
corresponding to a particular geometry is not needed in the course of the proof. It is almost identical in three dimensions
by making the appropriate changes in the interface, the integrals involved, and the radiation condition.

The decomposition (20) of uout and the interface conditions (10) and (11) on B lead to the definition of the multiple-DtN
non-reflecting boundary condition introduced in [14]. In fact, a new interior boundary value problem for
uin 2 C2ðXinÞ \ CðXinÞ and for the boundary values of um (m = 1,2, . . . ,M) on Bm is defined as
r2uin þ k2n2ðxÞuin ¼ k2mðxÞuinc in Xin; ð27Þ

Z
@uin

@m
þ ð1� ZÞuin ¼ � Z

@uinc

@m
þ ð1� ZÞuinc

� �
on C; ð28Þ

uin ¼
XM

l¼1

ul on Bm for m ¼ 1;2; . . . ;M; ð29Þ
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@uin

@mm
¼
XM

l¼1

@ul

@mm
on Bm for m ¼ 1;2; . . . ;M; ð30Þ
where m, the unit normal vector to C, points into the interior of Xin and mm, the unit normal vector to Bm, points into the exte-
rior of Xm. The two equations (29) and (30) constitute the multiple-DtN boundary condition.

The integral representation (21) of um was enough to prove Theorem 2, but it is not convenient for computational pur-
poses. An alternative useful representation of these outgoing waves can be obtained for separable regions. For instance, if
the interface boundary components Bm are chosen to be circles (two-dimensional case), and local polar coordinate systems
(rm,hm) are defined in the outer regions Wm internally bounded by Bm, then, the outgoing fields um can be written in terms of
eigenfunction expansions and their boundary values on Bm as follows:
umðrm; hmÞ ¼ 1
2p

X1
n¼0

�n
Hð1Þn ðkrmÞ
Hð1Þn ðkRmÞ

Z 2p

0
umðRm; ~hÞ cos nðhm � ~hÞd~h; ð31Þ
where Rm
6 rm, 0 6 hm

6 2p, and �n is the Neumann factor, i.e., �0 = 1 and �n = 2 for n P 1. This expression for um is replaced in
(29) and (30) to obtain explicit representations of the multiple-DtN boundary condition. As mentioned above, the BVP (27)–
(30) is numerically solved and the boundary values of um on Bm are obtained as a by-product. These values are replaced into
(31) to obtain um in Wm and ultimately uout in Xout from the decomposition (20). As shown in Theorem 3 of [14], the far-field
pattern u1 of uout is given by
u1ðhÞ ¼
1� i

2p
ffiffiffiffi
p
p

XM

m¼1

X1
n¼0

�n
ð�iÞne�ikðbm

x cos hþbm
y sin hÞ

Hð1Þn ðkRmÞ

Z 2p

0
umðRm; ~hÞ cos nðh� ~hÞd~h: ð32Þ
For other scattering configurations, for example elongated obstacles, it might be convenient to use other curves/surfaces,
such as ellipses/ellipsoids, as the interfaces Bm (see [16]). As long as an analytical representation of the outgoing wave fields
similar to (31) is available, the interior BVP (27)–(30) can be defined and then numerically solved. Thus, the theory and tech-
niques formulated in this work are not limited to circular (or spherical) interfaces.

Notice that the validity of the theorems presented in this section is based on the existence of a unique solution to the
original scattering BVP (1)–(3). In [27], the existence of strong solutions is proven using potential theory, Fredholm integral
equations of the second kind, and the Riesz–Fredholm theory for compact operators. That work requires the physical bound-
ary C to be of class C2. If this assumption is relaxed, that approach is no longer valid in general. Unfortunately, in practical
applications is common to find boundaries with corners and edges. Existence of solutions for these singular boundaries has
been studied [29], but for brevity, they are not discussed in this work.

Regarding the use of finite difference methods for regions containing boundary singularities, such as re-entrant corners, it
is well-known that the expected rate of convergence or even convergence may not be achieved in general. For instance, for
convergent methods the gradients in the vicinity of the singularity may become unbounded thus negatively affecting the
rate of convergence. In particular, this is the case for the FDM supported by curvilinear boundary-conforming coordinates
introduced in this work. To alleviate this difficulty several approaches have been devised depending on the type of singular-
ity. Good references are found in [30,31] for finite differences and also in [32,33], for finite elements. In most of these ap-
proaches, a coupling of the analytical and numerical solutions about the singularity is performed (similar to the DtN
approach at the interface). The implementation of these techniques in connection with the curvilinear FDM is a work yet
to be done. However, in Section 6.2, the proposed FDM coupled with the multiple-DtN technique was successfully applied
to several multiple scattering configurations including singularities on their boundaries. Although we have not performed a
rigorous study, we attribute the convergence of these numerical experiments to the smoothness and the boundary-conform-
ing properties of the elliptic grids employed.
4. Multiple scattering problem in generalized curvilinear coordinates

A goal of the present work is to obtain accurate and efficient numerical solutions of multiple scattering problems from
complexly shaped obstacles in two dimensions. As outlined in the previous sections, the proposed approach consists of
obtaining a numerical approximation of the BVP (27)–(30) in a relatively small bounded region Xin ¼

SM
m¼1X

m, see Fig. 2.
Each sub-domain Xm is an annular region with arbitrary piecewise smooth inner boundary Cm and circular outer boundary
Bm. Local boundary-conforming curvilinear coordinate systems are defined for each sub-domain Xm. Thus, the coordinate
lines conform to the corresponding obstacle bounding curve Cm and to the outer circle Bm. These local systems of coordinates
are independent from each other.

The coordinates of a point in the bounded sub-domain Xm are given by
xðnm;gmÞ ¼ ðxðnm;gmÞ; yðnm;gmÞÞ; where 1 6 nm
6 Nm

1 and 1 6 gm
6 Nm

2 :
The parametric curves (x(nm,1),y(nm,1)) and ðxðnm;Nm
2 Þ; yðn

m;Nm
2 ÞÞ coincide with the boundary curves Cm and Bm, respectively.

The new coordinates may be obtained as transformations Tm from a computational domain with rectangular coordinates
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(nm,gm) to the physical sub-domain Xm with coordinates (x(nm,gm),y(nm,gm)). The transformations Tm are smooth and invert-
ible. They are defined in more detail in Section 5.1.

In contrast, for each unbounded region Wm ¼ X nXm local polar coordinate systems
xðrm; hmÞ ¼ xðrm; hmÞ; yðrm; hmÞð Þ ¼ bm þ rm cos hm; rm sin hmð Þ; m ¼ 1;2; . . . ;M ð33Þ
are constructed. Here, Rm
6 rm <1 and 0 6 hm

6 2p are the independent variables in polar coordinates measured from the
center, bm ¼ ðbm

x ; b
m
y Þ, of the circle Bm. Thus, any point in Xout ¼

TM
m¼1W

m has a different representation for each
m 2 {1,2, . . . ,M}. As a consequence, the location of any point in X can be given in terms of either the independent variables
(rm,hm) or (nm,gm), depending on where it is located. More precisely,
x ¼ ðx; yÞ ¼ bm þ rm cos hm; rm sin hmð Þ; if x 2 Wm;

ðxðnm;gmÞ; yðnm;gmÞÞ; if x 2 Xm;

(
m ¼ 1;2; . . . ;M: ð34Þ
Notice that an arbitrary point on the circular interface Bm, may be identified using both ordered pairs (rm,hm) and (nm,gm). In
fact, on the circle Bm, the variables rm and gm adopt the following values rm = Rm, gm ¼ Nm

2 . Thus, xðRm; hmÞ ¼ xðnm;Nm
2 Þ when

x 2 Bm.
The interior BVP (27)–(30) in generalized curvilinear coordinates is governed by Eq. (27) defined in the union of M disjoint

sub-domains Xm written in terms of (nm,gm), respectively. Dropping the m superscript, each governing equation becomes
1
J2 aðuinÞnn � 2bðuinÞng þ cðuinÞgg

� �
þ 1

J3 aynn � 2byng þ cygg

� �
xgðuinÞn � xnðuinÞg
� �

þ 1
J3 axnn � 2bxng þ cxgg
	 


ynðuinÞg � ygðuinÞn
� �

þ k2n2ðn;gÞuin ¼ k2mðn;gÞuinc; ð35Þ
where n(n,g) = n(x(nm,gm)) with similar notation for m(n,g). The symbols a, b, c, and J represent the scale metric factors and
the jacobian of the coordinates transformation Tm, respectively. These are defined as
a ¼ x2
g þ y2

g; b ¼ xnxg þ ynyg; c ¼ x2
n þ y2

n ; and J ¼ xnyg � xgyn:
Also, the normal derivatives of uin and uinc, present in the boundary condition (28), can be written at each portion Cm of the
physical boundary in terms of (nm,gm) for gm = 1 as
@uin

@mm
ðnmÞ ¼ mm � ruinð Þðxðnm;1ÞÞ ¼ 1ffiffifficp �yn

xn

� �
� 1

J

ðuinÞnyg � ðuinÞgyn

ðuinÞgxn � ðuinÞnxg

 !
and ð36Þ

@uinc

@mm
ðnmÞ ¼ mm � ruincð Þðxðnm;1ÞÞ ¼ 1ffiffifficp �yn

xn

� �
� ikdeikx�d; ð37Þ
where the definition of the incident field uinc has been used in (37). However, for the two-dimensional problem, it is conve-
nient to express d = (cos/, sin/) where / is called the angle of incidence of the incident plane wave. Substitution of (36) and
(37) into boundary condition (28) at the physical boundary Cm leads to
Z cðuinÞg � bðuinÞn
h i

þ ð1� ZÞ ffiffifficp Juin ¼ ikZðyn cos /� xn sin /Þ � ð1� ZÞ ffiffifficp� �
Jeikðx cos /þy sin /Þ; ð38Þ
where x, y, xn, yn, c, b, J, uin, (uin)n, and (uin)g are functions of (nm,gm) and should be evaluated at gm = 1, which corresponds to
the physical boundary Cm.

At each interface Bm, boundary condition (29) requires the evaluation of the outgoing wave fields ul (l = 1, . . . ,M) at points
xðnm;Nm

2 Þ on the circle as follows:
ulðnmÞ ¼ ulðxðnm;Nm
2 ÞÞ ¼ ulðxðrlðnm;Nm

2 Þ; h
lðnm;Nm

2 ÞÞ ¼
1

2p
X1
n¼0

�n
Hð1Þn ðkrlðnmÞÞ

Hð1Þn ðkRlÞ

Z 2p

0
ulðRl; ~hÞ cos nðhlðnmÞ � ~hÞd~h; ð39Þ
where rlðnmÞ ¼ rlðnm;Nm
2 Þ and hlðnmÞ ¼ hlðnm;Nm

2 Þ are uniquely determined from nm. Notice that for l = m (39) reduces to (31).
The left-hand side of boundary condition (30) requires the evaluation of the derivative of uin in the direction normal to

each Bm. Since Bm is a circle of radius Rm centered at ðbm
x ; b

m
y Þ, it is easier to obtain the components of the unit vector mm in

terms of the coordinates of the global Cartesian system as mm ¼ ð1=RmÞðx� bm
x ; y� bm

y Þ. Consequently, the derivative of uin in
the direction normal to Bm becomes
@uin

@mm
ðnmÞ ¼ mm � ruinð Þðxðnm;Nm

2 ÞÞ ¼
1

Rm

x� bm
x

y� bm
y

 !
� 1

J

ðuinÞnyg � ðuinÞgyn

ðuinÞgxn � ðuinÞnxg

 !
¼ 1

RmJ
lðuinÞn þ kðuinÞg
� �

; ð40Þ
where l ¼ ðx� bm
x Þyg � ðy� bm

y Þxg and k ¼ ðy� bm
y Þxn � ðx� bm

x Þyn. Here again, x, y, xn, yn, xg, yg, J, (uin)n, and (uin)g are func-
tions of the independent variables (nm,gm) and they should be evaluated at gm ¼ Nm

2 which corresponds to the artificial
boundary Bm.
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At the right-hand side of (30), the normal derivatives of the outgoing wave fields ul (l = 1, . . ., ,M) in the direction normal to
Bm are present. Their expressions in terms of generalized coordinates (nm,gm) changes depending if l = m or l – m. For l = m,
the normal derivative is in the radial direction of the local m-polar coordinates (rm,hm). Therefore, they can be evaluated di-
rectly from (31) as
@um

@mm
ðnmÞ ¼ @um

@rm
ðxðnm;Nm

2 ÞÞ ¼
k

2p
X1
n¼0

�n
Hð1Þ

0

n ðkRmÞÞ
Hð1Þn ðkRmÞ

Z 2p

0
umðRm; ~hÞ cos nðhmðnmÞ � ~hÞd~h: ð41Þ
When l – m, it is more convenient to write the unit vector mm in terms of the l-polar coordinates (rl,hl). As illustrated in Fig. 2,
its components are mm = (cos[hl(nm) � hm(nm)], � sin[hl(nm) � hm(nm)]). This leads to the following expression for the normal
derivative:
@ul

@mm
ðnmÞ ¼ mm � rul

	 

ðxðnm;Nm

2 ÞÞ ¼
cos½hlðnmÞ � hmðnmÞ�
� sin½hlðnmÞ � hmðnmÞ�

 !
�

@ul

@rl

1
rl
@ul

@hl

0
@

1
A

¼ cos½hlðnmÞ � hmðnmÞ� k
2p

X1
n¼0

�n
Hð1Þ0n ðkrlðnmÞÞ

Hð1Þn ðkRlÞÞ

Z 2p

0
ulðRl; ~hÞ cos nðhlðnmÞ � ~hÞd~h

þ sin½hlðnmÞ � hmðnmÞ�
2prlðnmÞ

X1
n¼0

�n
nHð1Þn ðkrlðnmÞÞ

Hð1Þn ðkRlÞ

Z 2p

0
ulðRl; ~hÞ sin nðhlðnmÞ � ~hÞd~h: ð42Þ
Since the transformation of coordinates represented by (34) is invertible, then the ordered pair (rl,hl) and the angle hm that
appear in Eqs. (39) and (42) are uniquely determined from nm. In particular, xðnm;Nm

2 Þ ¼ xðRm; hmÞ ¼ xðrl; hlÞ. A more explicit
relationship between (rl,hl) and nm is given by
rl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xðnm;Nm
2 Þ � bl

x

� �2
þ yðnm;Nm

2 Þ � bl
y

� �2
r

; ð43Þ

cosðhlÞ ¼ xðnm;Nm
2 Þ � bl

x

rl
; sinðhlÞ ¼

yðnm;Nm
2 Þ � bl

y

rl
; ð44Þ
whereas the dependence of hm on nm is given by
cosðhmÞ ¼ xðnm;Nm
2 Þ � bm

x

Rm ; sinðhmÞ ¼
yðnm;Nm

2 Þ � bm
y

Rm : ð45Þ
However, the dependence of x and y on nm is determined numerically or analytically only after the transformation Tm is
defined.

The results of this section can be summarized as a reformulation of the interior BVP (27)–(30) in terms of generalized
curvilinear coordinates. The new formulation consists of (35) as governing equation with (38) as physical boundary condi-
tion, (29) as part of the multiple-DtN boundary condition, where ul(nm) is given by (39) and (30) as the other equation form-
ing the multiple-DtN condition, with the normal derivative terms replaced by (40)–(42). Each one of these equations need to
be considered over each sub-domain Xm.

5. Numerical solution: grids and finite difference method

As mentioned in the introduction, the BVP in generalized curvilinear coordinates just derived will be numerically solved
using finite difference methods. This approach requires robust supporting grids for the accuracy of the approximate solu-
tions. Therefore, there is a need to obtain appropriate grids for scatterers of complexly shaped geometry. The approach
adopted in this work consists of generating structured elliptic grids numerically. This is done through a transformation
Tm used to establish a relationship between the coordinates (nm,gm) in a rectangular computational domain and the physical
coordinates (x,y) in Xm.

5.1. Numerical grid generation: elliptic-polar grids

A precise definition for the transformation Tm is given in this section. The generation of elliptic coordinates for the sub-
domain Xm is independent from the generation in other sub-domains Xl. Therefore, results in this section are applicable to
all Xm, m 2 {1,2, . . . ,M}. In order to alleviate the notation, the superscripts will be dropped at this point and reassumed later
when necessary. A common practice in elliptic grid generation is to implicitly define the transformation T as the numerical
solution to a Dirichlet boundary value problem governed by the following system of quasi-linear elliptic equations [34,35]
for the physical coordinates x and y,
axnn � 2bxng þ cxgg þ awxn þ c/xg ¼ 0; ð46Þ
aynn � 2byng þ cygg þ awyn þ c/yg ¼ 0: ð47Þ
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The functions w and / are called control functions for the influence they have on the location of the grid lines of the final grid.
Their appropriate definition has been the subject of numerous studies. A few of them are found in [13,36,37].

For annular regions with circular boundaries, the optimum uniform smooth grid is the one obtained using polar coordi-
nates. This is the preferred grid in most applications when boundary layers are not present. A natural question to ask is if
there is a particular way to define w and / such that the generalized curvilinear coordinates generated from (46) and
(47) for circular annular domains coincides with the well-known polar coordinates. The answer to this question is positive.
Actually, by defining the control functions w ¼ anðn;gÞ

2aðn;gÞ and / ¼ cgðn;gÞ
2cðn;gÞ, the elliptic system (46) and (47) transforms into
axnn � 2bxng þ cxgg þ
1
2
anxn þ

1
2
cgxg ¼ 0; ð48Þ

aynn � 2byng þ cygg þ
1
2
anyn þ

1
2
cgyg ¼ 0: ð49Þ
As stated in the next theorem, a particular solution to this system is provided by the well-known polar coordinates. First,
consider the polar coordinates defined by the transformation
xðn;gÞ ¼ bx þ rðgÞ cos hðnÞ; yðn;gÞ ¼ by þ rðgÞ sin hðnÞ; ð50Þ
where
rðgÞ ¼ R� a
N2 � 1

ðg� 1Þ þ a; hðnÞ ¼ 2p
N1 � 1

ðn� 1Þ; 1 6 n 6 N1; 1 6 g 6 N2:
Obviously, the plane region corresponding to transformation (50) consists of the circular annular region with center at b =
(bx,by), inner radius a, and outer radius R.

Theorem 3. The BVP for the coordinates (x,y) = (x(n,g),y(n,g)) governed by the quasi-linear elliptic equations (48) and (49) with
boundary conditions given by
ðxðn;1Þ; yðn;1ÞÞ ¼ bþ ða cos hðnÞ; a sin hðnÞÞ; ð51Þ
ðxðn;N2Þ; yðn;N2ÞÞ ¼ bþ ðR cos hðnÞ;R sin hðnÞÞ; ð52Þ
ðxð1;gÞ; yð1;gÞÞ ¼ ðxðN1;gÞ; yðN1;gÞÞ; ð53Þ
ðxnð1;gÞ; ynð1;gÞÞ ¼ ðxnðN1;gÞ; ynðN1;gÞÞ; 1 6 n 6 N1; 1 6 g 6 N2 ð54Þ
has polar coordinates given by transformation (50) as a solution.
Proof. First, notice that coordinates (50) satisfy the boundary conditions (51) and (52) and the conditions of periodicity (53)
and (54). A straightforward differentiation shows that they also satisfy the governing elliptic partial differential Eqs. (48) and
(49). Therefore, these polar coordinates are a solution to the boundary value problem governed by this elliptic system. h

A natural expectation is that grids generated from (48) and (49) for non-circular annular regions preserve the good prop-
erties that polar grids have for circular domains. In fact, this is the case, as shown for all the particular domains considered in
this work. Therefore, these new elliptic grids can be considered as a generalization of the polar grids to more complex annu-
lar regions. Thus, we will call them elliptic-polar grids.

The numerical grid generation process consists of using centered finite difference approximation combined with point-
SOR iteration. For convenience, the independent variables n and g are discretized using a unit step size Dn = Dg = 1, and their
discrete values are ni = iDn = i and gj = jDg = j where i = 1,2, . . . ,N1 and j = 1,2, . . . ,N2. The grid size is denoted by N1 � N2. A
refinement of the discretization is then obtained by increasing N1 and N2 as desired. In particular, the physical coordinate
x of any interior grid point is obtained from the numerical solution of the following discrete equation in iterative form
xkþ1
i;j ¼

1
2ðaþ cÞi;j

ai;jðxk
iþ1;j þ xkþ1

i�1;jÞ þ ci;jðxk
i;jþ1 þ xkþ1

i;j�1Þ þ 2xnxgxng þ yngðxnyg þ xgynÞ
� �

i;j
� 2bi;jðxngÞi;j

� �
; ð55Þ
where
ai;j ¼ ðxgÞ2i;j þ ðygÞ
2
i;j; bi;j ¼ ðxnÞi;jðxgÞi;j þ ðynÞi;jðygÞi;j; ci;j ¼ ðxnÞ2i;j þ ðynÞ

2
i;j;
and
ðxnÞi;j ¼ ðxk
iþ1;j � xkþ1

i�1;jÞ=2; ðxgÞi;j ¼ ðxk
i;jþ1 � xkþ1

i;j�1Þ=2;

ðynÞi;j ¼ ðyk
iþ1;j � ykþ1

i�1;jÞ=2; ðygÞi;j ¼ ðyk
i;jþ1 � ykþ1

i;j�1Þ=2;

ðxngÞi;j ¼ ðxk
iþ1;jþ1 � xk

iþ1;j�1 � xkþ1
i�1;jþ1 þ xkþ1

i�1;j�1Þ=4;

ðyngÞi;j ¼ ðyk
iþ1;jþ1 � yk

iþ1;j�1 � ykþ1
i�1;jþ1 þ ykþ1

i�1;j�1Þ=4;
for i = 2, . . . ,N1 � 1 and j = 2, . . . ,N2 � 1.
A similar algebraic equation is obtained for the discrete values of the y-coordinate. The super-indices k and k + 1 represent

the current and new steps in the iteration process. The SOR method [38] uses a relaxation parameter - to update xkþ1
i;j value
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Fig. 3. Elliptic-polar grids for two complexly shaped scatterers.
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as xkþ1
i;j ¼ -xkþ1

i;j þ ð1�-Þxk
i;j. The value of - = 1.80 is appropriate for relatively fast convergence of the iterative technique. At

k = 0, an initial grid needs to be defined. Then, new grids are iteratively obtained until the maximum pointwise error be-
tween two consecutive grids falls under some specified tolerance, i.e., �k+1 < Tol. This maximum pointwise error is defined
as follows:
�kþ1 ¼ max
16i6N1
16j6N2

jxkþ1
i;j � xk

i;jj; jykþ1
i;j � yk

i;jj
n o

: ð56Þ
The final grid is smooth and non-self-overlapping even in the presence of boundary singularities as shown in Fig. 3 which
displays the final grids conforming to two different obstacles. To the best of our knowledge, this is the first time that the
system of partial differential Eqs. (48) and (49) has been used to generate elliptic boundary-fitted grids. More details on
the grid generation process and other grid generation alternatives can be found in [39,34,35,13,40] for similar domains.

5.2. Numerical solution of the scattering problem

The expression for Helmholtz equation in generalized curvilinear coordinates (35) is greatly simplified by substituting
(46) and (47) into it. In fact, the new representation of Helmholtz equation in elliptic-polar coordinates is
1
J2 aðuinÞnn � 2bðuinÞng þ cðuinÞgg þ

1
2

anðuinÞn þ cgðuinÞg
� �� �

þ k2n2uin ¼ k2muinc; ð57Þ
where the metric factors a, b, c, and the jacobian J were already defined in Section 4. The boundary conditions for the scat-
tering problem in generalized curvilinear coordinates obtained in Section 4 remain unchanged in elliptic-polar coordinates.

The finite difference method is based on a second order discretization of all the derivatives present in the equations. As a
result, a linear system of algebraic equations is obtained. In particular, the discrete equation corresponding to (57) has as
unknowns the field values (uin)i,j in each sub-domain Xm. This is given by
k2n2
i;jJ

2
i;j � 2ðai;j þ ci;jÞ

� �
ðuinÞi;j þ ai;j �

1
4
ðanÞi;j

� �
ðuinÞi�1;j þ ai;j þ

1
4
ðanÞi;j

� �
ðuinÞiþ1;j þ ci;j �

1
4
ðcgÞi;j

� �
ðuinÞi;j�1

þ ci;j þ
1
4
ðcgÞi;j

� �
ðuinÞi;jþ1 �

bi;j

2
ðuinÞiþ1;jþ1 � ðuinÞiþ1;j�1 � ðuinÞi�1;jþ1 þ ðuinÞi�1;j�1

� �
¼ k2mi;jJ

2
i;jðuincÞi;j for 1 6 i 6 Nm

1 � 1 and 2 6 j 6 Nm
2 : ð58Þ
Recall that ni,j = n(x(ni,gj)) with similar notation for mij. At points on each of the obstacle boundaries Cm, the following dis-
crete equation is derived
Z ci;1 �3ðuinÞi;1 þ 4ðuinÞi;2 � ðuinÞi;3
� �

� bi;1 ðuinÞiþ1;1 � ðuinÞi�1;1

� �h i
þ 2ð1� ZÞ

ffiffiffiffiffiffiffi
ci;1

p
Ji;1ðuinÞi;1

¼ 2
ffiffiffiffiffiffiffi
�1
p

kZ ðynÞi;1 cos /� ðxnÞi;1 sin /
� �

� ð1� ZÞ
ffiffiffiffiffiffiffi
ci;1

ph i
Ji;1e

ffiffiffiffiffi
�1
p

kðxi;1 cos /þyi;1 sin /Þ; for 1 6 i 6 Nm
1 � 1: ð59Þ
Notice that to preserve the second order scheme and avoid the introduction of ghost points at the physical boundary, the
term (uin)g of (38) has been discretized using a forward second order finite difference formula.

At each artificial boundary Bm, the discrete Eq. (58) is evaluated at nm
i ¼ i and gm ¼ Nm

2 . As a consequence, additional
unknown field values ðuinÞi�1;Nm

2 þ1, ðuinÞi;Nm
2 þ1 and ðuinÞiþ1;Nm

2 þ1 at ghost points lying outside Xm appear. These unknowns also
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appear in the discretization of the interface condition (30), in terms of elliptic-polar grids, where (39)–(42) have been used.
In fact, the discrete form of interface condition (30) at ðnm

i ;gmÞ ¼ ði;Nm
2 Þ is
1
2RmJi;Nm

2

li ðuinÞiþ1;Nm
2
� ðuinÞi�1;Nm

2

� �
þ ki ðuinÞi;Nm

2 þ1 � ðuinÞi;Nm
2 �1

� �h i

¼ kHm

2p
XN

n¼0

�n
Hð1Þ0n ðkRmÞÞ
Hð1Þn ðkRmÞ

XNm
1 �1

p¼1

um
p cos nðhmðnm

i Þ � pHmÞ

þ
X
l–m

cos½hlðnm
i Þ � hmðnm

i Þ�kHl

2p
XN

n¼0

�n
Hð1Þ0n ðkrlðnm

i ÞÞ
Hð1Þn ðkRlÞÞ

XNl
1�1

p¼1

ul
p cos nðhlðnm

i Þ � pHlÞ

8<
:

þ sin½hlðnm
i Þ � hmðnm

i Þ�H
l

2prlðnm
i Þ

XN

n¼0

�n
nHð1Þn ðkrlðnm

i ÞÞ
Hð1Þn ðkRlÞ

XNl
1�1

p¼1

ul
p sin nðhlðnm

i Þ � pHlÞ

9=
;; ð60Þ
for 1 6 i 6 Nm
1 � 1; and for 1 6m 6M, where li ¼ ðxi;Nm

2
� bm

x ÞðygÞi;Nm
2
� ðyi;Nm

2
� bm

y ÞðxgÞi;Nm
2

and ki ¼ ðyi;Nm
2
� bm

y ÞðxnÞi;Nm
2
�

ðxi;Nm
2
� bm

x ÞðynÞi;Nm
2
: In (60), the infinite series of eigenfunctions has been truncated up to N terms, which may destroy the

uniqueness of the solution. This difficulty can be overcome by either choosing N P max{kRm} (adopted in this work) or
by using the modified DtN condition introduced in [16] for single scattering and in [14] for multiple scattering.

In addition, the integrals present in (42) have been approximated by the trapezoidal rule using evenly spaced partitions.
The factors Hm ¼ 2p=ðNm

1 � 1Þ and Hl ¼ 2p=ðNl
1 � 1Þ are the discretization steps employed in the approximations of the inte-

grals. Also rl, hl and hm depend on nm
i through the parametrization of the interface boundary Bm and through (43)–(45).

In (60), an additional family of unknowns have also appeared. They are the discrete values of the purely outgoing wave
field um

p for p ¼ 1;2; . . . ;Nm
1 � 1 and m = 1,2, . . . ,M on their respective interface boundaries Bm. Therefore, to properly com-

plete the system of equations, we need another set of equations involving this new family of unknowns. These equations
are provided by the discrete form of the interface condition (29). Substituting the expression in generalized curvilinear coor-
dinates (39) into (29), the following discrete equation is obtained
ðuinÞi;Nm
2
¼ um

i þ
X
l–m

Hl

2p
XN

n¼0

�n
Hð1Þn ðkrlðnm

i ÞÞ
Hð1Þn ðkRlÞ

XNl
1�1

p¼1

ul
p cos nðhlðnm

i Þ � pHlÞ

8<
:

9=
;

for1 6 i 6 Nm
1 � 1; and for 1 6 m 6 M:

ð61Þ
As a consequence, an algebraic linear system formed by (58)–(60) and consisting of
ðNm
1 � 1ÞðNm

2 � 1Þ þ ðNm
1 � 1Þ þ ðNm

1 � 1Þ þ ðNm
1 � 1Þ ¼ ðNm

1 � 1ÞðNm
2 þ 2Þ;
equations for each sub-domain Xm have been obtained. Also, the number of unknowns on each sub-domain Xm includes
field values at the following number of nodes:

1. The number of grid points ðNm
1 � 1Þ � Nm

2 , including boundary points and without counting twice the points at the branch
cut.

2. The number of ghost points: Nm
1 � 1.

3. The number of discrete points Nm
1 � 1 in the approximation of the purely outgoing wave field um.

Therefore, the total number of unknowns and total number of algebraic equations for a multiple scattering problem con-
sisting of M obstacles is
# of unknowns ¼ # of equations ¼
XM

m¼1

ðNm
1 � 1ÞðNm

2 þ 2Þ: ð62Þ
A matrix equation for the algebraic linear system (58)–(61) is given by
AU ¼ F with ANM�NM ; ð63Þ
where NM ¼
PM

m¼1ðN
m
1 � 1ÞðNm

2 þ 2Þ. The construction of the unknown vector U depends on how the unknowns of the system
are ordered. Beginning with the first obstacle (m = 1), the following order is implemented. To start, the discretization of the
physical boundary condition (59) is used to obtain the first vector components. This means that values of the unknown field
variables at the nodes (i,1) for i ¼ 1; . . . ;Nm

1 � 1, located on the physical curve g = 1, occupy the first positions of U. Then, val-
ues of the unknown field present in the discretization of Helmholtz equation (58) for the interior points, starting at the first
node i = 1 of the second g-curve (j = 2), provides the next vector components. The next set of components comes from the
unknown field values over the following g-curve (increasing j) and sweeping over the index i. This construction is repeated
until the last node i ¼ Nm

1 � 1 of the outermost g-curve corresponding to the interface Bm (j ¼ Nm
2 ) is reached. After that, un-

known field values at ghost points ði;Nm
2 þ 1Þ, for i ¼ 1 . . . Nm

1 � 1, provided by (60) are placed. The last set of unknown com-
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Fig. 4. Matrix pattern of A showing its non-zero entries (nz) for two obstacles (left) and three obstacles (right).
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ponents corresponds to the values of the outgoing wave um on the boundary Bm. They are provided by (61), for i = 1 until
i ¼ Nm

1 � 1. Unknown field values for each additional obstacle (m = 2,3, . . . ,M) are added to U according to the order just
described.

As a result, the unknown vector U has three families of entries for each obstacle. These are (i) the discrete values of the
field uin at each grid point, (ii) the discrete values of the field uin at the ghost points lying outside the computational domain,
and (iii) the discrete values of the outgoing wave fields um at the interface Bm. Thus,
U ¼ ðuinÞ1;1 . . . ðuinÞN1
1�1;N1

2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{at grid points

ðuinÞ1;N1
2þ1 . . . ðuinÞN1

1�1;N1
2þ1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{at ghost points

ðu1Þ1 . . . ðu1ÞN1
1�1

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{outgoing field

� � �z}|{repeat for next obstacles

2
64

3
75

T

ð64Þ
The matrix A has the matrix pattern shown in Fig. 4 for two and three obstacles. A relevant feature of A is the presence of full
small blocks. They are obtained from the discretization of the integrals present in the multiple-DtN boundary condition for
the unknowns um

1 um
2 ; . . . ;um

Nm
1 �1. The order of the algebraic equations and unknowns may be permuted to obtain improved

banded matrices, see [14]. The algebraic linear system defined by (63) is then numerically solved. We have employed the
MATLAB sparse direct solver based on LU-decomposition with pivoting. This algorithm provided accurate approximations
for the medium size matrices considered in this work.

6. Numerical experiments

6.1. Two cylindrical obstacles of circular cross-section

In this section, the numerical method is validated by comparing the exact solution for two circular obstacles embedded in
a homogeneous medium with the numerical solution obtained from the proposed method. The analytical solution of this
scattering problem and its far-field pattern can be obtained using eigenfunction expansions, as shown in [4]. The first obsta-
cle consists of a circle of radius a1 = 1 with center at b1 = (2, � 2). The second obstacle is a circle of radius a2 = 0.5 with center
at b2 = (�2,3). The angle of incidence is / = 0. The interface boundary for the first sub-domain X1 is a circle of radius R1 = 1.5,
and for the second sub-domain X2, it is a circle of radius R2 = 1.0. The same number of grid points was used to discretize both
sub-domains. Comparisons were made for wave numbers k = 2p and k = 4p. Boundary conditions for soft obstacles (Z = 0),
hard obstacles (Z = 1), and an intermediate case (Z = 0.5) were considered. The approximations were obtained by truncating
the series of the eigenfunction expansion (31) at N = 50 terms. This satisfies the requirement N > max{kR1,kR2} for these
experiments. In Table 1, the maximum absolute error on the numerical far-field patterns are reported.

In order to verify the order of convergence, a sequence of numerical tests was made for increasingly finer grids conform-
ing to the circular obstacles. More precisely, the parameter N1 was doubled each time to obtain finer grids, while the second
grid parameter N2 was changed according to the proportion N1 = 6N2. The second order convergence of the proposed numer-
ical method is easily verified from the results shown in Table 1. Fig. 5 displays a comparison between the exact and numer-
ical far-field patterns for soft obstacles (Z = 0). The top plot was obtained for k = 2p and N1 � N2 = 120 � 20. The bottom plot



Table 1
Maximum absolute error of the far-field pattern.

Grid size k = 2p k = 4p

Z = 0.0 Z = 0.5 Z = 1.0 Z = 0.0 Z = 0.5 Z = 1.0

60 � 10 1.12 � 10�1 4.70 � 10�1 3.93 � 10�1 4.56 � 10�0 3.63 � 10�0 2.94 � 10�0

120 � 20 2.75 � 10�2 1.13 � 10�1 9.61 � 10�2 3.46 � 10�1 9.23 � 10�1 7.92 � 10�1

240 � 40 6.91 � 10�3 2.84 � 10�2 2.39 � 10�2 9.15 � 10�3 2.36 � 10�1 1.97 � 10�1

480 � 80 1.75 � 10�3 7.12 � 10�3 5.96 � 10�3 2.31 � 10�3 5.90 � 10�2 4.91 � 10�2
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Fig. 5. Comparison between exact and numerically computed far-field patterns for two circular soft (Z = 0) obstacles. The wave number is k = 2p (top), and
k = 4p (bottom).
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corresponds to k = 4p and N1 � N2 = 240 � 40. Even for these moderate grid sizes, excellent agreements between the approx-
imate and the exact far-field patterns are observed. For other types of boundary conditions, similar results were obtained.

6.2. Three complexly shaped obstacles

We begin this section by showing the computational cost advantage of the multiple-DtN technique coupled with the no-
vel elliptic-polar grids (mDtN-EPG). Multiple scattering from three obstacles bounded by complex curves is considered (see
Fig. 6). The curves have the following parametric equations. The top ellipse is given by xðtÞ ¼ 6

5 cos t, and yðtÞ ¼ 2
5 sin t with a

clockwise rotation of p/4 and center at ð2
ffiffiffi
2
p

;2
ffiffiffi
2
p
Þ. The middle three-petal rose is described by xðtÞ ¼ 1

4 ð3þ cos 3tÞ cos t and
yðtÞ ¼ 1

4 ð3þ cos 3tÞ sin t with center at the origin. Finally, the astroid at the bottom is given by xðtÞ ¼ 1
5 ð3 cos t þ cos 3tÞ, and

yðtÞ ¼ 1
5 ð3 sin t � sin 3tÞ with center at (0,�3). For all three shapes, 0 6 t 6 2p. The medium is homogeneous, i.e., n � 1.

This problem was previously treated in [7] using boundary conforming grids [13] coupled with local absorbing boundary
conditions [8]. The wavenumber was k = 2p. To obtain good results, a 300 � 300 grid consisting of 90,000 grid points was
needed. The application of mDtN-EPG to this problem considerably reduces the number of grid points. In fact, for the same
problem, we employ three grids of size 120 � 15, 120 � 15, and 120 � 20 surrounding the three scatterers. Thus, only 6000
grid points are used for the computation. This represents a 93% reduction on the domain discretization. The grids and the
amplitude of the total wave field for the two different techniques are depicted in Figs. 6 and 7, respectively. Not only the
number of grid points is greatly reduced, but the grid generation is independently performed on three regions containing
only a single hole which significantly simplifies the generation process.

The SOR iterative method is used to solve the discrete version of the elliptic Eqs. (48) and (49). The number of unknowns
is equal to the number P of grid points. Thus each iteration requires OðPÞ operations. In order to reach a level of accuracy
consistent with the quadratic error of the FDM, at most OðP ln PÞ iterations (for non-optimal relaxation parameter) are



Fig. 6. Global grid (left) and mDtN-EPG local grids for three obstacles (right).

Fig. 7. Total field amplitude for multiple acoustic scattering from three obstacles using a global discretization technique coupled with local absorbing
boundary condition (left) and using the mDtN-EPG technique (right).

S. Acosta, V. Villamizar / Journal of Computational Physics 229 (2010) 5498–5517 5513
required, see [41]. In other words, the total amount of work is OðP2 ln PÞ. In light of this estimate, the 93% reduction in the
number of grid points translates into more than 99% reduction in computational work. This is a major improvement rarely
found in the literature. In addition, to generate a 120 � 20 grid (as in Fig. 6) only requires 0.13 s of CPU time in a modest
2.80 GHz processor using a code written in MATLAB R2008b. As a consequence the grid generation effort is minimal.

Our next experiment consists of scattering from another configuration of three complex obstacles embedded in a homo-
geneous medium as shown in Figs. 8 and 9. The top obstacle is bounded by the astroid given by the parametric equations
xðtÞ ¼ 1

10 ð4 cos t þ cos 4tÞ and yðtÞ ¼ 1
10 ð4 sin t � sin 4tÞwith a counterclockwise rotation of p/5 and center at ð� 5

4 ;
7
4Þ. The mid-

dle obstacle is described by xðtÞ ¼ 3
44 ð10þ cos 2tÞ cos t and yðtÞ ¼ 3

64 ð10þ 6 cos 2tÞ sin t with a counterclockwise rotation of p/
2 and center at (�1,0). The bottom obstacle is given by xðtÞ ¼ 3

11 ð3 cos t þ cos 3tÞ and yðtÞ ¼ 3
22 ð3 sin t � sin 3tÞ with a coun-

terclockwise rotation of p/8 a center at (0,�3). For all three shapes 0 6 t 6 2p.
Two different boundary conditions are considered. In Fig. 8, the response for acoustically hard (Z = 1) obstacles is illus-

trated, while Fig. 9 shows the scattering from obstacles with impedance-type boundary conditions for Z = 1/(1 + ik). The lat-
ter represents obstacles with absorptive boundaries. The wavenumber used for all these experiments is k = 8p. Notice that
Fig. 9 exhibits a very small reflection of the incoming plane wave in the backscattered zone. In fact, its plane wave-like
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Fig. 8. Multiple acoustic scattering from three obstacles with hard-type boundary. Amplitude of the total field (left), real part of the total field (right).
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pattern are barely disturbed in this zone. This agrees with the expected physical response from absorption-type obstacles. By
intentionally placing the circular interfaces of the middle and bottom obstacles very close, the continuity of the scattered
field between the disjoint computational regions or sub-domains is remarkably illustrated. This fact shows how well the pro-
posed technique handles the interaction between disjoint sub-domains.

6.3. Obstacles embedded in heterogeneous media

In this section, the numerical results for the scattering from two obstacles embedded in a locally perturbed heterogeneous
medium are reported. Each obstacle is described by the parametric equations xðtÞ ¼ 3

4 ðj sin 3
2 tj10 þ j cos 3

2 tj10Þ�1=10 cos t, and
yðtÞ ¼ 3

4 ðj sin 3
2 tj10 þ j cos 3

2 tj10Þ�1=10 sin t, with 0 6 t 6 2p. The obstacles are centered at the points (�4,0) and (4,0), respec-
tively. The angle of incidence is / = p/2 and the wavenumber is k = p. The scatterers possess acoustically soft boundaries.
For an obstacle centered at the origin, the index of refraction n is defined as follows:
nðx; yÞ ¼ nðqÞ :¼
4; if q 6 1:25;
0:5ð3 cosð2pðq� 1:25ÞÞ þ 5Þ; if 1:25 6 q 6 1:75;
1; if 1:75 6 q;

8><
>:
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Fig. 10. Multiple scattering from two obstacles embedded in a heterogeneous medium. Amplitude of the total field when angle of incidence / = p/2,
wavenumber k = p, for acoustically soft obstacles.
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where qðx; yÞ :¼ rðj sin 3
2 hj10 þ j cos 3

2 hj10Þ1=10, and (r,h) are the polar coordinates of a point (x,y) 2X. This definition of n needs
to be translated to the center of each obstacle. Hence, the index of refraction changes smoothly from a maximum of 4 at the
boundary of the obstacles to a minimum of 1 far from them. In other words, the effective wavenumber reaches a maximum
of four times the wavenumber of the incident field close to the obstacles. In Fig. 10, the expected physical behavior that the
wavelength of the total field is much smaller in the heterogeneous region than outside of it is illustrated. This particular
experiment shows the applicability of the FDM coupled with the DtN condition to handle scattering from localized hetero-
geneous media.

7. Conclusions

Multiple scattering problems from complexly shaped obstacles have been numerically solved. We have considered not
only scatterers inside otherwise homogeneous media, but also the more challenging case of obstacles embedded in heterog-
enous media with variable index of refraction in their vicinity.

Our approach consists of replacing the original exterior problem by an equivalent interface problem whose interface B is
formed by closed smooth boundaries Bm that serve as separate artificial boundaries for each obstacle. Then, numerical solu-
tions are obtained inside the relatively small annular regions containing each obstacle. This has two major advantages. One
of them is that the number of grid points is greatly reduced compared with those obtained from enclosing all the scatterers
by a single boundary. The other is that the grid generation is independently performed on the regions containing only a sin-
gle obstacle which significantly simplifies the generation process. This is particularly true for the structured grids supporting
the finite difference methods employed in this work. As a result, the computational cost is greatly reduced.

We also provide a rigorous proof for the equivalence between the interface BVP and the original multiple scattering prob-
lem that accounts for the presence of localized media heterogeneities. The proof, based on Green’s integral representation
formula, does not require the use of separable coordinate systems or the knowledge of a particular set of eigenfunctions.

To illustrate the practical value of the technique, we applied it to challenging scatterer configurations as shown in Figs. 7–
10. Qualitative results coincide with the physical expectation for the scattering from these configurations. Moreover, the cir-
cular interfaces of the neighbor obstacles were intentionally placed very close and the continuity of the scattered field be-
tween disjoint computational regions or sub-domains was remarkably observed. We also obtained accurate approximations
of the wave field and far-field pattern for the benchmark problem of scattering from two circular cylinders (see Fig. 5). In fact,
a comparison with the exact solution easily revealed a second order convergence for our second order method.

Finite difference methods are attractive for the simulation of wave phenomena due to their simplicity and efficiency on
cartesian grids for geometrically simple domains. However, their application on complex geometries may be negatively af-
fected by the grid choice. For instance, using cartesian staircase-type meshes, the convergence rate of a classical second order
scheme may be reduced to first order, as described in [42,43]. More recent comparisons performed by Medvinsky et al. [12]
found that the errors using FEM were larger than using finite differences for single scattering from elliptical obstacles. They
attributed it to the inaccuracies in approximating the elliptical boundary with a polar grid when using the FEM. These results
motivated our choice of smooth and boundary-conforming grids, such as the novel elliptic-polar grids introduced in Sec-
tion 5.1, for our numerical scheme.
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Although the computations of the multiple-DtN technique are performed in relatively small sub-domains, the linear sys-
tem that results from the discretization of the continuous problem is not completely sparse. In fact, all the field values at the
interface are also part of the unknowns. This may be a disadvantage when compared with the integral equation methods,
such as Nyström or boundary elements, whose matrices are dense but their only unknowns are at the obstacle boundaries.
However, when the properties of the medium change, the use of integral equation methods may result in comparable or lar-
ger linear systems than those obtained by employing the proposed method.

We are currently working on the implementation of the theoretical results found in this work to configurations of truly
complex three-dimensional obstacles. One of the major challenges in doing this will be the extension of the grid generation
technique to three-dimensional scatterer configurations. However, the fact that grids are independently generated in sub-
domains containing a single obstacle will greatly simplify the process. In order to improve the rate of convergence and
the computational efficiency, we plan to use higher order compact schemes [44] instead of our current second order method.
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